
1

Auto scaling squid servers using Amazon Web

Services

October 29th 2014

Version 0.93

Claudio Pontili

1 Squid server load during jobs execution .. 2

1.1 Network OUT ... 2

1.1.1 First spike ... 3

1.1.2 Second spike .. 3

1.2 CPU .. 4

1.3 Network IN... 4

1.4 Conclusions .. 5

2 Auto scalabling squid servers .. 6

2.1 Prices ... 7

2.2 Price for a real job execution ... 7

3 Cloudformation .. 10

3.1 Cloudformation and squid servers .. 10

4 Testing scalable squids .. 15

4.1 ELB+Single squid server ... 16

4.2 ELB+Multiple Squid Instances .. 18

4.3 Conclusions .. 19

5 Using cloudfront instead of squid servers .. 19

5.1 Price problem .. 19

5.2 problems .. 21

5.3 Conclusions .. 22

2

1 SQUID SERVER LOAD DURING JOBS EXECUTION

These is the load of a single squid server during the execution of about 1000 jobs inside AWS.

1.1 NETWORK OUT

AVERAGE OF 5 MINUTES - BYTES PER MINUTE

Two spikes:

Value:

4,083,881,062.8 (Bytes) about 520 Mbit/s

Time:

2014/10/19 23:30 CST

Metric:

NetworkOut

and

Value:

3,736,336,809.2 (Bytes) about 475 Mbit/s

Time:

2014/10/22 21:25 CST

Metric:

NetworkOut

3

1.1.1 First spike

Started at 23:20 and ended at 23:55 CST Time about 30 minutes.

In about 10 minutes the squid server reached the maximum load, we don’t know if 520 Mbit/s is the max

throughtput or there is bottleneck.

1.1.2 Second spike

4

Started at 21:15 and ended at 22:25 CST Time about 1h10 minutes.

1.2 CPU

The CPU (m3.large) isnot a bottleneck.

1.3 NETWORK IN

5

This is the value of the biggest spike in network IN so I think there is no bottleneck too.

Value:

68,871,411 (Bytes) about 9 Mbit/s

Time:

2014/10/20 04:25 UTC

Metric:

NetworkIn

1.4 CONCLUSIONS
The bottleneck in a m3.large instance is the network OUT. The spikes are high; they reach the maximum in

about 10 minutes.

However to scale up our squid server with an ASG (Auto scaling group) we need about 2/3 minutes so we

have enough time to handle all the traffic.

Moreover we know in advance that there’ll be a spike so we can pre-load the ELB (Elastic Load Balancer)

calling AWS and pre-load the ASG adding one or two instance launching a simple script.

6

2 AUTO SCALABLING SQUID SERVERS

Using ASG (Auto Scaling Group), LC (Launch Control), ELB (Elastic Load Balancer), SNS (Simple notification

service) we can create a scalable architecture for our squid servers.

Squid servers

Autoscaling
group

Amazon SNS
and

CloudWatch

Availability Zone 1

Availability Zone 2

Squid servers

EC2 Executing jobs

Elastic Load Balancing

This is a simple picture of what we can configure inside AWS.

The SNS monitors the current instances of squid servers and alert the ASG when the network traffic OUT is

too high or too low.

When the traffic is too low the ASG terminates one squid server, we can choose different termination

policy.

http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/AutoScalingBehavior.InstanceTerminatio

n.html

When the traffic is too high, the ASG executes the LC and create a new instance. The instance is included in

the ELB and the ELB checks if the instance is healthy executing a ping to the port 3128. The ELB keeps

checking all the instances, if one of them became un-healthy, it will be terminated and replaced with a new

one.

The ELB is configured as “internal”. It can accept traffic only from inside VPC (Virtual private cloud).

Moreover the EC2 instances that are executing jobs must use a DNS name like that http://SquidELBTest-

539578840.us-west-2.elb.amazonaws.com:3128. In fact an ELB is a combination of a Round-Robin DNS and

load balancer. It uses RR DNS to scale up infinitely itself but after scaling up and down it behaves like a

normal load balancer.

The next step should be to create a DNS CNAME record like “squidAWS.fnal.gov” because every time we

create a new ELB the assigned DNS changes.

http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/AutoScalingBehavior.InstanceTermination.html
http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/AutoScalingBehavior.InstanceTermination.html
http://squidelbtest-539578840.us-west-2.elb.amazonaws.com:3128/
http://squidelbtest-539578840.us-west-2.elb.amazonaws.com:3128/

7

In this way, we do not need the cache discovery system (shoal) because the address of the squid server

never change and we can easily reach a throughput of Gbits.

2.1 PRICES
There are two additional prices for this solution. ASG and LC are free. The price of SNS is very low. We must

pay the ELB and the traffic of the EC2 instances:

 ELB billed per hour 0.025$ and per GB processed 0.008$

 The squid servers are distributed between different subnet and different AZs (availability zones) so

we have to pay for the traffic IN or OUT 0.01$ per GB

Looking to the definition of AZ:

“An availability zone is a distinct location within a region. Each availability zone is isolated from failures in

any other zone. By running multiple AMIs across several zones, you can protect your databases and

applications from a single point of failure. Each zone has its own power sources and cooling and are

designed to be insulated from floods and fires.”

We can understand that using all three AZs inside the Oregon Region is important. And last but not least if

we run thousands of instances in different AZs it’s less likely that AWS can stop us.

So the second price of 0.01 per GB could be avoided but it is NOT recommended.

2.2 PRICE FOR A REAL JOB EXECUTION

8

Using this metric extracted from AWS Console we can calculate the price for the scalable squid server

solution if we would have used during the execution of 1000 jobs.

The total network out+in for one spike is about 120

GB. We can assume the worst scenario where each

EC2 job instance communicate with a squid

instance in another AZ, so we need to pay 0.01 per

GB out and in.

120*0.01*2=2.4 USD

We can assume 2 hours of 2 EC2 m3.medium, but

can be less because of scale down policy.

0.07*4=0.28 USD

2 hours of ELB 0.025*2=0.050 USD

Data processed by ELB 0.008*120=0.96 USD

EBS IO + EBS Space Max 2 USD

 Total price 5.69 USD

We can spend only 6 USD because we have a cloudformation script and it’s easy to destroy and create the

infrastructure only when we need it.

9

I think that for less than 6 USD it’s better not to use the squid server of the FermiLab and avoid spikes of

traffic that can be easily handled inside AWS.

10

3 CLOUDFORMATION

AWS CloudFormation enables you to create and provision AWS infrastructure deployments predictably and

repeatedly. It helps you leverage AWS products such as Amazon EC2, Amazon Elastic Block Store, Amazon

SNS, Elastic Load Balancing, and Auto Scaling to build highly reliable, highly scalable, cost-effective

applications without worrying about creating and configuring the underlying AWS infrastructure. AWS

CloudFormation enables you to use a template file to create and delete a collection of resources together

as a single unit (a stack).

3.1 CLOUDFORMATION AND SQUID SERVERS
The squid servers that we are using inside AWS are used only when there are some job to compute.

Using ASG+LC+ELB+VPC+SNS means that we need a lot of work to set up all the parameters correctly. So

I’ve created a ClouFformation script in JSON format, to set up the entire infrastructure in minutes and

destroy it with just one click.

With the web console of AWS we can create a new stack

11

Insert a name and select a template

You can change some parameters like the instance type from medium to large, or the security group

(firewall rules), etc.

12

You can add a tag to every resource that we’ll be created by the stack. Moreover Cloudformation add other

tags to suggest that a resource is created with an automatic process.

Create in progress

13

In about 1 minute and 30 seconds we have our infrastructure up and running. In the output tab you can

find the address of the squid servers.

In the resources tab you can find all the resource created by the script.

14

Deleting the stack you’ll delete all the resources created.

15

4 TESTING SCALABLE SQUIDS

Testing our infrastructure means to test the scalability of the ELB and the scalability of the squid servers

together.

To do that I used Dave Dykstra’s script executing it in some testing EC2 instances.

#!/bin/bash
export http_proxy=http://internal-SquidInternetELB-933666428.us-west-2.elb.amazonaws.com:3128
let I=0
RUNNING="running.`uname -n`"
trap "rm -f $RUNNING" 0
touch $RUNNING
let P=0
WGETSPERITER=15
while [$P -lt 10]; do
 let P=$P+1
 while [-f $RUNNING]; do
 let I=$I+1
 echo "Iteration $P:$I"
 time bash -c 'n=0; while [$n -lt '"$WGETSPERITER"']; do wget -qO/dev/null --header="X-Frontier-Id: dwdtest"
"http://cmsfrontier4.cern.ch:8000/dwdfiles/Frontier/type=frontier_file:1:DEFAULT&encoding=BLOB&p1=medfile.tgz"; let n=$n+1; done'
 done &
done
#rm -f $RUNNING
Wait

All the instances are m3.medium with:

 1 vCPU High Frequency Intel Xeon E5-2670 v2 (Ivy Bridge).

 3.75 GB of memory

 1 root EBS magnetic storage 10 GB (Max throughput/volume 40 MBps)

 1 additional EBS SSD storage 10 GB (Max throughput/volume 128 MBps)

16

4.1 ELB+SINGLE SQUID SERVER
Using a single m3.medium testing instance and a single m3.medium squid server we reached the maximum

throughput.

Network out - Bytes per minute

Maximum throughput inside EC2 test client

17

Number of requests registered from the ELB

CPU Utilization of Squid Server

So the bottleneck is the CPU because the m3.medium instance has only 1 vCPU Intel Xeon E5-2670.

18

4.2 ELB+MULTIPLE SQUID INSTANCES
To test the scalability of the infrastructure I have followed these steps:

1. Launch the CloudFormation script

2. Launch two m3.medium instance (test client) and execute Dave’s script

3. Wait 10-20 minutes and check the scale up

4. Launch another two m3.medium instance (test client) and execute Dave’s script

5. Wait 20-30 minutes and check the maximum throughput

6. Terminate three m3.medium (test client) instance

7. Wait 10-20 minutes and check the current bandwidth

8. Terminate the last m3.medium (test client)

9. Wait 10 minutes and check the scale down process

The Network Out statistics show that everything works as expected.

19

The Scaling History of the Auto Scaling Group show a Scaling up (Launching a new EC2 instance –idc50bad0)

and a Scaling Down (Terminating EC2 instance i-ade628a7).

The maximum throughtput reached with two m3.medium squid server is about 2,200,000,000*2 Bytes/min

(560 Mbit/s).

4.3 CONCLUSIONS
Using a CloudFormation with Autoscaling is easy to deloy in a couple of minutes a group of squid servers

that can easily reach a throughtput of Gbits per seconds.

The scaling up process is pretty fast so we should have problem with traffic spikes.

Of course we should test the infrastructure with a more real traffic load before to use it in a production

environment. We should tune the scaling up policy, the scaling down policy, choose the right instance size

(m3.medium or m3.large?), and check if we can have a CPU or memory bottleneck.

5 USING CLOUDFRONT INSTEAD OF SQUID SERVERS

Amazon CloudFront is a content delivery web service. It integrates with other Amazon Web Services

products to give developers and businesses an easy way to distribute content to end users with low

latency, high data transfer speeds, and no minimum usage commitments.

In other words is a proxy server to speed up HTTP traffic distributing contents in Edge Location. Each AWS

Region is an Edge Location and it scale up and down automatically.

Therefore, we could use it instead of Squid servers.

5.1 PRICE PROBLEM
Normally CloudFront is used to speed up web sites hosted inside AWS. The contents are cached in the Edge

Locations in the entire world so the clients can have higher speed and the server can have lower load.

20

Of course, we want to use it in a different way, using just the Edge Location in Oregon Region caching

CVMFS contents.

The prices are

 $0.120 per GB for data from CloudFront to Internet

 $0.020 per GB for data from Origin (CVMFS) to CloudFront

 $0.0075 per 1000 HTTP requests

I got in contact with AWS Business support to ask about prices in our solution. I hoped that the traffic from

Cloudfront to our EC2 Job Instance could be billed in a different way. The answer was no, it’s billed as

normal traffic from CloudFront to Internet.

Network out of squid server serving 1000 EC2 instances. Sum of 6 hours of traffic.

The total traffic of two spikes is about 200 GBytes.

21

Networkin of squid server serving 1000 EC2 instances. Sum of 6 hours of traffic.

The total traffic of two spikes is about 1.4 GB

The total prices should be:

 200*0.12=24 USD

 0.02*1.4=0.028 USD

 Assuming an average file size of 50 MB the HTTP requests are

((201.4*1024*1024)/50)/1000)*0.0075=31 USD

Total price is about 55 USD.

5.2 PROBLEMS
Amazon does not give information about what kind of server use in the background of CloudFront.

Talking with Dave I knew that you need a specific version of squid server. In fact, other versions of squid

have some bugs.

22

Setting up a CloudFront Distribution to http://cmsfrontier4.cern.ch:8000 and executing a WGET we can’t

find useful information in the VIA header about the server used.

Moreover, I was not able to execute Dave’s Script correctly.

5.3 CONCLUSIONS
CloudFront could be perfect because it has a pay-per-GB pricing policy and it scales automatically.

However, the price is not so low it corresponds about 400 hours of m3.large instance and above all we

could have problems using a different version of squid server.

We can go on testing CloudFront but it doesn’t seem a good solution.

http://cmsfrontier4.cern.ch:8000/

